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Production line: The life in the workshop

Ideal Case:




Production line: The life in the workshop

Real Case:




Production line: The life in the workshop

Real Case:

Is it possible to register how well
distributed is the workshop?



How to approach to the problem?

Track the movement of people in a large area:
e Recording the activities of a person in the production line
* Identify the person
* Repeat during several minutes and for different people
Examine the data to find ineffectively located spots:
* A RaspberryPi camera is used to register the data

* Python, OpenCV and some object detection algorithms can be used to
do the analysis
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OpenCV

https://opencv.org/
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Methodology



Use background subtraction in order to detect
movement
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Use background subtraction in order to detect
movement




Use background subtraction in order to detect
movement
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Plot Intensity vs time to detect high activity
segments
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Plot Intensity vs time to detect high activity
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YOLO (You Only Look Once):

Unified, Real-Time Object Detection
arXiv:1506.02640

1. Resize image.
2. Run convolutional network.
3. Non-max suppression.

Redmon et al. (2015)


https://arxiv.org/abs/1506.02640

YOLO (You Only Look Once):

Unified, Real-Time Object Detection
arXiv:1506.02640

Faster RCNN
i ssD 100x faster than

competitors
@ YoLo

Accuracy ’ Fast RCNN

Speed

https://pjreddie.com/darknet/yolo/
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YOLO (You Only Look Once):

Unified, Real-Time Object Detection
arXiv:1506.02640

Single regression analysis
Resize of the input image
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Redmon et al. (2015)

Class probability map

Prediction of bounding
boxes
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YOLO (You Only Look Once):

Unified, Real-Time Object Detection
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YOLO (You Only Look Once):

Unified, Real-Time Object Detection
arXiv:1506.02640

Redmon et al. (2015)
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Can we apply YOLO to this problem?

* Short answer: Yes. Nevertheless, limitations are
present in the process (open problem).

 We apply YOLO to identify the individuals on
every frame.

* Workers path at the workshop can be tracked
on real time.




YOLO outputs

* Once a 'Person' is detected, useful
information is saved.

* Pixel position (x,y), width and height
of YOLO output boxes, and
confidence of the YOLO class.

e Can we find all the tracks of one
individual person?




Path tracking: the simplest approach?
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Path tracking: siamese network approach
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Path tracking: siamese network approach




Path tracking: siamese network approach




Training and validation loss for the siamese
network approach

validation ‘ll validation
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Training and validation loss for the siamese
network approach
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Conclusions
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Summary and conclusions

Workers activities can be tracked by using a combination of background subtraction and an
object detection algorithm. However, we require an additional tool to identify all the
individuals in the workshop.

In comparison to different approaches, as CNN and unsupervised learning, the siamese
network approach works better.

Although the siamese network approach gives a good accuracy in both the training and the
validation, more data is need to produce results with a higher fidelity and solve the
problem.



